200 research outputs found

    Sequence diversity in three tomato species: SNPs, markers, and molecular evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tomato species are of significant agricultural and ecological interest, with cultivated tomato being among the most common vegetable crops grown. Wild tomato species are native to diverse habitats in South America and show great morphological and ecological diversity that has proven useful in breeding programs. However, relatively little is known about nucleotide diversity between tomato species. Until recently limited sequence information was available for tomato, preventing genome-wide evolutionary analyses. Now, an extensive collection of tomato expressed sequence tags (ESTs) is available at the SOL Genomics Network (SGN). This database holds sequences from several species, annotated with quality values, assembled into unigenes, and tested for homology against other genomes. Despite the importance of polymorphism detection for breeding and natural variation studies, such analyses in tomato have mostly been restricted to cultivated accessions. Importantly, previous polymorphisms surveys mostly ignored the linked meta-information, limiting functional and evolutionary analyses. The current data in SGN is thus an under-exploited resource. Here we describe a cross-species analysis taking full-advantage of available information.</p> <p>Results</p> <p>We mined 20,000 interspecific polymorphisms between <it>Solanum lycopersicum </it>and <it>S. habrochaites </it>or <it>S. pennellii </it>and 28,800 intraspecific polymorphisms within <it>S. lycopersicum</it>. Using the available meta-information we classified genes into functional categories and obtained estimations of single nucleotide polymorphisms (SNP) quality, position in the gene, and effect on the encoded proteins, allowing us to perform evolutionary analyses. Finally, we developed a set of more than 10,000 between-species molecular markers optimized by sequence quality and predicted intron position. Experimental validation of 491 of these molecular markers resulted in confirmation of 413 polymorphisms.</p> <p>Conclusion</p> <p>We present a new analysis of the extensive tomato EST sequences available that represents the most comprehensive survey of sequence diversity across <it>Solanum </it>species to date. These SNPs, plus thousands of molecular makers designed to detect the polymorphisms are available to the community via a website. Evolutionary analyses on these polymorphism uncovered sets of genes potentially important for the evolution and domestication of tomato; interestingly these sets were enriched for genes involved in response to the environment.</p

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Polymorphism identification and improved genome annotation of Brassica rapa through Deep RNA sequencing.

    Get PDF
    The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes-R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)-using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/

    A High-Throughput Method for Illumina RNA-Seq Library Preparation.

    Get PDF
    With the introduction of cost effective, rapid, and superior quality next generation sequencing techniques, gene expression analysis has become viable for labs conducting small projects as well as large-scale gene expression analysis experiments. However, the available protocols for construction of RNA-sequencing (RNA-Seq) libraries are expensive and/or difficult to scale for high-throughput applications. Also, most protocols require isolated total RNA as a starting point. We provide a cost-effective RNA-Seq library synthesis protocol that is fast, starts with tissue, and is high-throughput from tissue to synthesized library. We have also designed and report a set of 96 unique barcodes for library adapters that are amenable to high-throughput sequencing by a large combination of multiplexing strategies. Our developed protocol has more power to detect differentially expressed genes when compared to the standard Illumina protocol, probably owing to less technical variation amongst replicates. We also address the problem of gene-length biases affecting differential gene expression calls and demonstrate that such biases can be efficiently minimized during mRNA isolation for library preparation

    Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development

    Get PDF
    Transcript abundance of roughly a third of expressed Arabidopsis thaliana genes is circadian-regulated

    A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

    Get PDF
    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping
    • ā€¦
    corecore